# statistic for univariate data: maximum
data <- runif(1000)
estimate.max <- function(data, indices) {return(max(data[indices]))}
tau <- function(n){n} # convergence rate (usually sqrt(n), but n for max)
boot.out <- mboot(data, estimate.max, R = 1000, m = 2*sqrt(NROW(data)), replace = FALSE)
cis <- mboot.ci(boot.out, conf=0.95, tau=tau, types=c("basic","norm"))
print(cis$basic)
# statistic for multivariate data: correlation
data <- data.frame(x = runif(1000))
data$y <- data$x + runif(1000)
estimate.cor <- function(data, indices) {return(cor(data$x[indices],data$y[indices]))}
boot.out <- mboot(data, estimate.cor, R = 1000, m = 2*sqrt(NROW(data)), replace = FALSE)
cis <- mboot.ci(boot.out, conf=0.95, tau=sqrt, types=c("basic","norm"))
print(cis$basic)
Run the code above in your browser using DataLab