
integrateODE(dyn, ..., tdur)
dx ~ -a*x
for $dx/dt = -ax$.list(from=5,to=10,dt=.001)
d
, so use dx~-k*x
for exponential decay.
All parameters (such as k
) must be assigned numerical values in the
argument list. All dynamical variables must be assigned initial conditions in the
argument list. The returned value will be a list with one component named after each
dynamical variable. The component will be a spline-generated function of t
.soln = integrateODE(dx~r*x*(1-x/k), k=10, r=.5, tdur=20, x=1)
soln$x(10)
soln$x(30) # outside the time interval for integration
plotFun(soln$x(t)~t, tlim=range(0,20))
soln2 = integrateODE(dx~y, dy~-x, x=1, y=0, tdur=10)
plotFun(soln2$y(t)~t, tlim=range(0,10))
# SIR epidemic
epi = integrateODE(dS~ -a*S*I, dI ~ a*S*I - b*I, a=0.0026, b=.5, S=762, I=1, tdur=20)
Run the code above in your browser using DataLab