Learn R Programming

mosaic (version 0.2-3)

aggregating: Aggregating summary statistics

Description

These drop-in replacements and new summary statistics functions are formula-aware and allow the use of simple names within data frames. When given formulas, they call aggregate using the formula.

Usage

mean(x, ..., na.rm = TRUE, trim = 0)

median(x, ..., na.rm = TRUE)

sd(x, ..., na.rm = TRUE)

var(x, y = NULL, na.rm = TRUE, use, data = NULL)

max(x, ..., na.rm = TRUE)

min(x, ..., na.rm = TRUE)

prop(x, ..., level=TRUE, na.rm = TRUE)

count(x, ..., level=TRUE, na.rm = TRUE)

Arguments

x
an R object, possibly a formula
y
an R object, typically a numeric vector, possibly a data frame
data
a data frame for the formula methods
na.rm
a logical indicating whether missing data should be removed before calculation. Defaults to TRUE.
trim
proportion of timming (each tail) for a trimmed mean
level
a level of a factor
use
see var
...
additional arguments

Details

These methods are wrappers around functions and methods in the base and stats packages and provide additional interfaces.

The default value for na.rm is reversed from the functions in base and stats. Also, na.rm, use, and trim follow ... so must be named using their full names.

See Also

link{aggregate}

Examples

Run this code
mean(age, data=HELPrct)
mean(~age, data=HELPrct)
mean(age ~ ., data=HELPrct)
mean(age ~ 1, data=HELPrct)
mean(age ~ NULL, data=HELPrct)
mean(HELPrct$age)
mean(age ~ sex, data=HELPrct)
mean(age ~ sex + treat, data=HELPrct)

median(age, data=HELPrct)
median(~age, data=HELPrct)
median(age ~ ., data=HELPrct)
median(age ~ 1, data=HELPrct)
median(age ~ NULL, data=HELPrct)
median(HELPrct$age)
median(age ~ sex, data=HELPrct)
median(age ~ sex + treat, data=HELPrct)

max(age, data=HELPrct)
max(~age, data=HELPrct)
max(age ~ ., data=HELPrct)
max(age ~ 1, data=HELPrct)
max(age ~ NULL, data=HELPrct)
max(HELPrct$age)
max(age ~ sex, data=HELPrct)
max(age ~ sex + treat, data=HELPrct)

sd(age, data=HELPrct)
sd(~age, data=HELPrct)
sd(age ~ ., data=HELPrct)
sd(age ~ 1, data=HELPrct)
sd(age ~ NULL, data=HELPrct)
sd(HELPrct$age)
sd(age ~ sex, data=HELPrct)
sd(age ~ sex + treat, data=HELPrct)

var(age, data=HELPrct)
var(~age, data=HELPrct)
var(age ~ ., data=HELPrct)
var(age ~ 1, data=HELPrct)
var(age ~ NULL, data=HELPrct)
var(HELPrct$age)
var(age ~ sex, data=HELPrct)
var(age ~ sex + treat, data=HELPrct)

count(sex, data=HELPrct)
count(sex, data=HELPrct, level='male')
count(HELPrct$sex)

prop(sex, data=HELPrct)
prop(sex, data=HELPrct, level='male')
prop(HELPrct$sex)

Run the code above in your browser using DataLab