Learn R Programming

moult (version 2.3.1)

confint.moult: Conficence Intervals for Moult Parameters

Description

Calculate normal theory and bootstrap percentile intervals for moult parameters. Also returns bootstrap covariance matrix and standard error estimates for parameters.

Usage

# S3 method for moult
confint(object, parm, level = 0.95, ..., B = 1000, add.plot = TRUE)

Value

Returns a list with elements:

bootstrap.distribution

\(B \times p\) matrix of bootstrapped parameters.

bootstrap.percentile.ci

Table of bootstrap percentile intervals for all parameters. In addition, confidence intervals for half-date and end date (see details) are given.

bootstrap.vcov

Bootstrap estimates for variances and covariances between all parameters.

bootstrap.SE

Bootstrap estimates of parameter standard errors.

Arguments

object

model output returned by call to moult.

parm

currently ignored (should be a vector of numbers or names, specifying for which parameters to calculate confidence intervals).

level

confidence level.

...

additional arguments for plot.

B

integer: number of bootstrap samples to take.

add.plot

logical: should scatterplot of bootstrapped parameters be added?

Author

Birgit Erni birgit.erni@uct.ac.za

Details

End date is calculated as mean start date + duration. Half-date is calculated as mean start date + 0.5 * duration.

Examples

Run this code
data(sanderlings)
m2 <- moult(MIndex ~ Day, data = sanderlings)
if (FALSE) confint(m2, B = 100) # increase B for better precision

Run the code above in your browser using DataLab