Usage
tSNE(X, Y = NULL, k = 2, perplexity = 30, n.iter = 1000, eta = 500, initial.momentum = 0.5, final.momentum = 0.8, early.exaggeration = 4, gain.fraction = 0.2, momentum.threshold.iter = 20, exaggeration.threshold.iter = 100, max.binsearch.tries = 50)
Arguments
X
A data frame, data matrix, dissimilarity (distance) matrix or dist
object.
Y
Initial k-dimensional configuration. If NULL, the method uses a
random initial configuration.
k
Target dimensionality. Avoid anything other than 2 or 3.
perplexity
A rough upper bound on the neighborhood size.
n.iter
Number of iterations to perform.
eta
The "learning rate" for the cost function minimization
initial.momentum
The initial momentum used before changing
final.momentum
The momentum to use on remaining iterations
early.exaggeration
The early exaggeration applied to intial iterations
gain.fraction
Undocumented
momentum.threshold.iter
Number of iterations before using the final
momentum
exaggeration.threshold.iter
Number of iterations before using the real
probabilities
max.binsearch.tries
Maximum number of tries in binary search for
parameters to achieve the target perplexity