# NOT RUN {
data(eightParentSubsetMap)
data(wsnp_Ku_rep_c103074_89904851)
data(callFromMapExampleLocalisationStatistics)
library(ggplot2)
library(gridExtra)
#We use an existing set of localisation statistics, to make the example faster
called <- callFromMap(rawData = as.matrix(wsnp_Ku_rep_c103074_89904851), existingImputations =
eightParentSubsetMap, useOnlyExtraImputationPoints = TRUE, tDistributionPValue = 0.8,
thresholdChromosomes = 80, existingLocalisationStatistics = existingLocalisationStatistics)
plotData <- wsnp_Ku_rep_c103074_89904851
plotData$genotype1B <- factor(called$classificationsPerPosition$Chr1BLoc31$finals)
plotData$imputed1B <- factor(imputationData(eightParentSubsetMap)[, "Chr1BLoc31"])
plotData$genotype1D <- factor(called$classificationsPerPosition$Chr1DLoc16$finals)
plotData$imputed1D <- factor(imputationData(eightParentSubsetMap)[, "Chr1DLoc16"])
plotImputations1B <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputed1B)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1B") +
guides(color=guide_legend(title="IBD genotype"))
called1B <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotype1B)) +
geom_point() + theme_bw() + ggtitle("Called genotype, 1B") +
guides(color=guide_legend(title="Called cluster")) + scale_color_manual(values =
c("black", RColorBrewer::brewer.pal(n = 4, name = "Set1")))
plotImputations1D <- ggplot(plotData, mapping = aes(x = theta, y = r, color = imputed1D)) +
geom_point() + theme_bw() + ggtitle("Imputed genotype, 1D") +
guides(color=guide_legend(title="IBD genotype"))
called1D <- ggplot(plotData, mapping = aes(x = theta, y = r, color = genotype1D)) +
geom_point() + theme_bw() + ggtitle("Called genotype, 1D") +
guides(color=guide_legend(title="Called cluster")) +
scale_color_manual(values = c("black",RColorBrewer::brewer.pal(n=3,name = "Set1")[1:2]))
# }
# NOT RUN {
grid.arrange(plotImputations1B, plotImputations1D, called1B, called1D)
# }
Run the code above in your browser using DataLab