Learn R Programming

mpoly

Specifying polynomials

mpoly is a simple collection of tools to help deal with multivariate polynomials symbolically and functionally in R. Polynomials are defined with the mp() function:

library("mpoly")
mp("x + y")
# x  +  y

mp("(x + 4 y)^2 (x - .25)")
# x^3  -  0.25 x^2  +  8 x^2 y  -  2 x y  +  16 x y^2  -  4 y^2

Term orders are available with the reorder function:

(p <- mp("(x + y)^2 (1 + x)"))
# x^3  +  x^2  +  2 x^2 y  +  2 x y  +  x y^2  +  y^2

reorder(p, varorder = c("y","x"), order = "lex")
# y^2 x  +  y^2  +  2 y x^2  +  2 y x  +  x^3  +  x^2

reorder(p, varorder = c("x","y"), order = "glex")
# x^3  +  2 x^2 y  +  x y^2  +  x^2  +  2 x y  +  y^2

Vectors of polynomials (mpolyList’s) can be specified in the same way:

mp(c("(x+y)^2", "z"))
# x^2  +  2 x y  +  y^2
# z

Polynomial parts

You can extract pieces of polynoimals using the standard [ operator, which works on its terms:

p[1]
# x^3

p[1:3]
# x^3  +  x^2  +  2 x^2 y

p[-1]
# x^2  +  2 x^2 y  +  2 x y  +  x y^2  +  y^2

There are also many other functions that can be used to piece apart polynomials, for example the leading term (default lex order):

LT(p)
# x^3

LC(p)
# [1] 1

LM(p)
# x^3

You can also extract information about exponents:

exponents(p)
# [[1]]
# x y 
# 3 0 
# 
# [[2]]
# x y 
# 2 0 
# 
# [[3]]
# x y 
# 2 1 
# 
# [[4]]
# x y 
# 1 1 
# 
# [[5]]
# x y 
# 1 2 
# 
# [[6]]
# x y 
# 0 2

multideg(p)
# x y 
# 3 0

totaldeg(p)
# [1] 3

monomials(p)
# x^3
# x^2
# 2 x^2 y
# 2 x y
# x y^2
# y^2

Polynomial arithmetic

Arithmetic is defined for both polynomials (+, -, * and ^)…

p1 <- mp("x + y")

p2 <- mp("x - y")

p1 + p2
# 2 x

p1 - p2
# 2 y

p1 * p2
# x^2  -  y^2

p1^2
# x^2  +  2 x y  +  y^2

… and vectors of polynomials:

(ps1 <- mp(c("x", "y")))
# x
# y

(ps2 <- mp(c("2 x", "y + z")))
# 2 x
# y  +  z

ps1 + ps2
# 3 x
# 2 y  +  z

ps1 - ps2
# -1 x
# -1 z

ps1 * ps2 
# 2 x^2
# y^2  +  y z

Some calculus

You can compute derivatives easily:

p <- mp("x + x y + x y^2")

deriv(p, "y")
# x  +  2 x y

gradient(p)
# y^2  +  y  +  1
# 2 y x  +  x

Function coercion

You can turn polynomials and vectors of polynomials into functions you can evaluate with as.function(). Here’s a basic example using a single multivariate polynomial:

f <- as.function(mp("x + 2 y")) # makes a function with a vector argument
# f(.) with . = (x, y)

f(c(1,1))
# [1] 3

f <- as.function(mp("x + 2 y"), vector = FALSE) # makes a function with all arguments
# f(x, y)

f(1, 1)
# [1] 3

Here’s a basic example with a vector of multivariate polynomials:

(p <- mp(c("x", "2 y")))
# x
# 2 y

f <- as.function(p) 
# f(.) with . = (x, y)

f(c(1,1))
# [1] 1 2

f <- as.function(p, vector = FALSE) 
# f(x, y)

f(1, 1)
# [1] 1 2

Whether you’re working with a single multivariate polynomial or a vector of them (mpolyList), if it/they are actually univariate polynomial(s), the resulting function is vectorized. Here’s an example with a single univariate polynomial.

f <- as.function(mp("x^2"))
# f(.) with . = x

f(1:3)
# [1] 1 4 9

(mat <- matrix(1:4, 2))
#      [,1] [,2]
# [1,]    1    3
# [2,]    2    4

f(mat) # it's vectorized properly over arrays
#      [,1] [,2]
# [1,]    1    9
# [2,]    4   16

Here’s an example with a vector of univariate polynomials:

(p <- mp(c("t", "t^2")))
# t
# t^2

f <- as.function(p)
f(1)
# [1] 1 1

f(1:3)
#      [,1] [,2]
# [1,]    1    1
# [2,]    2    4
# [3,]    3    9

You can use this to visualize a univariate polynomials like this:

library("tidyverse"); theme_set(theme_classic())
f <- as.function(mp("(x-2) x (x+2)"))
# f(.) with . = x
x <- seq(-2.5, 2.5, .1)

qplot(x, f(x), geom = "line")
# Warning: `qplot()` was deprecated in ggplot2 3.4.0.
# This warning is displayed once every 8 hours.
# Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
# generated.

For multivariate polynomials, it’s a little more complicated:

f <- as.function(mp("x^2 - y^2")) 
# f(.) with . = (x, y)
s <- seq(-2.5, 2.5, .1)
df <- expand.grid(x = s, y = s)
df$f <- apply(df, 1, f)
qplot(x, y, data = df, geom = "raster", fill = f)

Using tidyverse-style coding (install tidyverse packages with install.packages("tidyverse")), this looks a bit cleaner:

f <- as.function(mp("x^2 - y^2"), vector = FALSE)
# f(x, y)
seq(-2.5, 2.5, .1) %>% 
  list("x" = ., "y" = .) %>% 
  cross_df() %>% 
  mutate(f = f(x, y)) %>% 
  ggplot(aes(x, y, fill = f)) + 
    geom_raster()
# Warning: `cross_df()` was deprecated in purrr 1.0.0.
# ℹ Please use `tidyr::expand_grid()` instead.
# ℹ See <https://github.com/tidyverse/purrr/issues/768>.
# This warning is displayed once every 8 hours.
# Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
# generated.

Algebraic geometry

Grobner bases are no longer implemented in mpoly; they’re now in m2r.

# polys <- mp(c("t^4 - x", "t^3 - y", "t^2 - z"))
# grobner(polys)

Homogenization and dehomogenization:

(p <- mp("x + 2 x y + y - z^3"))
# x  +  2 x y  +  y  -  z^3

(hp <- homogenize(p))
# x t^2  +  2 x y t  +  y t^2  -  z^3

dehomogenize(hp, "t")
# x  +  2 x y  +  y  -  z^3

homogeneous_components(p)
# x  +  y
# 2 x y
# -1 z^3

Special polynomials

mpoly can make use of many pieces of the polynom and orthopolynom packages with as.mpoly() methods. In particular, many special polynomials are available.

Chebyshev polynomials

You can construct Chebyshev polynomials as follows:

chebyshev(1)
# x

chebyshev(2)
# -1  +  2 x^2

chebyshev(0:5)
# 1
# x
# 2 x^2  -  1
# 4 x^3  -  3 x
# 8 x^4  -  8 x^2  +  1
# 16 x^5  -  20 x^3  +  5 x

And you can visualize them:

s <- seq(-1, 1, length.out = 201); N <- 5
(chebPolys <- chebyshev(0:N))
# 1
# x
# 2 x^2  -  1
# 4 x^3  -  3 x
# 8 x^4  -  8 x^2  +  1
# 16 x^5  -  20 x^3  +  5 x

df <- as.function(chebPolys)(s) %>% cbind(s, .) %>% as.data.frame()
names(df) <- c("x", paste0("T_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree)

Jacobi polynomials

s <- seq(-1, 1, length.out = 201); N <- 5
(jacPolys <- jacobi(0:N, 2, 2))
# 1
# 5 x
# 17.5 x^2  -  2.5
# 52.5 x^3  -  17.5 x
# 144.375 x^4  -  78.75 x^2  +  4.375
# 375.375 x^5  -  288.75 x^3  +  39.375 x
 
df <- as.function(jacPolys)(s) %>% cbind(s, .) %>% as.data.frame
names(df) <- c("x", paste0("P_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree) +
  coord_cartesian(ylim = c(-25, 25))

Legendre polynomials

s <- seq(-1, 1, length.out = 201); N <- 5
(legPolys <- legendre(0:N))
# 1
# x
# 1.5 x^2  -  0.5
# 2.5 x^3  -  1.5 x
# 4.375 x^4  -  3.75 x^2  +  0.375
# 7.875 x^5  -  8.75 x^3  +  1.875 x
 
df <- as.function(legPolys)(s) %>% cbind(s, .) %>% as.data.frame
names(df) <- c("x", paste0("P_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree)

Hermite polynomials

s <- seq(-3, 3, length.out = 201); N <- 5
(hermPolys <- hermite(0:N))
# 1
# x
# x^2  -  1
# x^3  -  3 x
# x^4  -  6 x^2  +  3
# x^5  -  10 x^3  +  15 x

df <- as.function(hermPolys)(s) %>% cbind(s, .) %>% as.data.frame
names(df) <- c("x", paste0("He_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree)

(Generalized) Laguerre polynomials

s <- seq(-5, 20, length.out = 201); N <- 5
(lagPolys <- laguerre(0:N))
# 1
# -1 x  +  1
# 0.5 x^2  -  2 x  +  1
# -0.1666667 x^3  +  1.5 x^2  -  3 x  +  1
# 0.04166667 x^4  -  0.6666667 x^3  +  3 x^2  -  4 x  +  1
# -0.008333333 x^5  +  0.2083333 x^4  -  1.666667 x^3  +  5 x^2  -  5 x  +  1

df <- as.function(lagPolys)(s) %>% cbind(s, .) %>% as.data.frame
names(df) <- c("x", paste0("L_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree) +
  coord_cartesian(ylim = c(-25, 25))

Bernstein polynomials

Bernstein polynomials are not in polynom or orthopolynom but are available in mpoly with bernstein():

bernstein(0:4, 4)
# x^4  -  4 x^3  +  6 x^2  -  4 x  +  1
# -4 x^4  +  12 x^3  -  12 x^2  +  4 x
# 6 x^4  -  12 x^3  +  6 x^2
# -4 x^4  +  4 x^3
# x^4

s <- seq(0, 1, length.out = 101)
N <- 5 # number of bernstein polynomials to plot
(bernPolys <- bernstein(0:N, N))
# -1 x^5  +  5 x^4  -  10 x^3  +  10 x^2  -  5 x  +  1
# 5 x^5  -  20 x^4  +  30 x^3  -  20 x^2  +  5 x
# -10 x^5  +  30 x^4  -  30 x^3  +  10 x^2
# 10 x^5  -  20 x^4  +  10 x^3
# -5 x^5  +  5 x^4
# x^5

df <- as.function(bernPolys)(s) %>% cbind(s, .) %>% as.data.frame
names(df) <- c("x", paste0("B_", 0:N))
mdf <- df %>% gather(degree, value, -x)
qplot(x, value, data = mdf, geom = "path", color = degree)

You can use the bernstein_approx() function to compute the Bernstein polynomial approximation to a function. Here’s an approximation to the standard normal density:

p <- bernstein_approx(dnorm, 15, -1.25, 1.25)
round(p, 4)
# -0.1624 x^2  +  0.0262 x^4  -  0.002 x^6  +  0.0001 x^8  +  0.3796

x <- seq(-3, 3, length.out = 101)
df <- data.frame(
  x = rep(x, 2),
  y = c(dnorm(x), as.function(p)(x)),
  which = rep(c("actual", "approx"), each = 101)
)
# f(.) with . = x
qplot(x, y, data = df, geom = "path", color = which)

Bezier polynomials and curves

You can construct Bezier polynomials for a given collection of points with bezier():

points <- data.frame(x = c(-1,-2,2,1), y = c(0,1,1,0))
(bezPolys <- bezier(points))
# -10 t^3  +  15 t^2  -  3 t  -  1
# -3 t^2  +  3 t

And viewing them is just as easy:

df <- as.function(bezPolys)(s) %>% as.data.frame

ggplot(aes(x = x, y = y), data = df) + 
  geom_point(data = points, color = "red", size = 4) +
  geom_path(data = points, color = "red", linetype = 2) +
  geom_path(size = 2)
# Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
# ℹ Please use `linewidth` instead.
# This warning is displayed once every 8 hours.
# Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
# generated.

Weighting is available also:

points <- data.frame(x = c(1,-2,2,-1), y = c(0,1,1,0))
(bezPolys <- bezier(points))
# -14 t^3  +  21 t^2  -  9 t  +  1
# -3 t^2  +  3 t
df <- as.function(bezPolys, weights = c(1,5,5,1))(s) %>% as.data.frame

ggplot(aes(x = x, y = y), data = df) + 
  geom_point(data = points, color = "red", size = 4) +
  geom_path(data = points, color = "red", linetype = 2) +
  geom_path(size = 2)

To make the evaluation of the Bezier polynomials stable, as.function() has a special method for Bezier polynomials that makes use of de Casteljau’s algorithm. This allows bezier() to be used as a smoother:

s <- seq(0, 1, length.out = 201) 
df <- as.function(bezier(cars))(s) %>% as.data.frame
qplot(speed, dist, data = cars) +
  geom_path(data = df, color = "red")

Other stuff

I’m starting to put in methods for some other R functions:

set.seed(1)
n <- 101
df <- data.frame(x = seq(-5, 5, length.out = n))
df$y <- with(df, -x^2 + 2*x - 3 + rnorm(n, 0, 2))

mod <- lm(y ~ x + I(x^2), data = df)
(p <- mod %>% as.mpoly %>% round)
# 1.983 x  -  1.01 x^2  -  2.709
qplot(x, y, data = df) +
  stat_function(fun = as.function(p), colour = 'red')
# f(.) with . = x

s <- seq(-5, 5, length.out = n)
df <- expand.grid(x = s, y = s) %>% 
  mutate(z = x^2 - y^2 + 3*x*y + rnorm(n^2, 0, 3))

(mod <- lm(z ~ poly(x, y, degree = 2, raw = TRUE), data = df))
# 
# Call:
# lm(formula = z ~ poly(x, y, degree = 2, raw = TRUE), data = df)
# 
# Coefficients:
#                           (Intercept)  poly(x, y, degree = 2, raw = TRUE)1.0  
#                             -0.070512                              -0.004841  
# poly(x, y, degree = 2, raw = TRUE)2.0  poly(x, y, degree = 2, raw = TRUE)0.1  
#                              1.005307                               0.001334  
# poly(x, y, degree = 2, raw = TRUE)1.1  poly(x, y, degree = 2, raw = TRUE)0.2  
#                              3.003755                              -0.999536
as.mpoly(mod)
# -0.004840798 x  +  1.005307 x^2  +  0.001334122 y  +  3.003755 x y  -  0.9995356 y^2  -  0.07051218

Installation

  • From CRAN: install.packages("mpoly")

  • From Github (dev version):

# install.packages("devtools")
devtools::install_github("dkahle/mpoly")

Acknowledgements

This material is based upon work partially supported by the National Science Foundation under Grant No. 1622449.

Copy Link

Version

Install

install.packages('mpoly')

Monthly Downloads

593

Version

1.1.2

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

David Kahle

Last Published

June 9th, 2025

Functions in mpoly (1.1.2)

mpoly-equal

Determine whether two multivariate polynomials are equal.
mpolyListArithmetic

Element-wise arithmetic with vectors of multivariate polynomials.
lissajous

Lissajous polynomials
components

Polynomial components
legendre

Legendre polynomials
deriv.mpoly

Compute partial derivatives of a multivariate polynomial.
mpoly

Multivariate polynomials in R.
plot.mpoly

Plot the (real) variety of a polynomial
permutations

Determine all permutations of a set.
round.mpoly

Round the coefficients of a polynomial
mpoly-defunct

Defunct mpoly functions
mp

Define a multivariate polynomial.
reorder.mpoly

Reorder a multivariate polynomial.
print.mpolyList

Pretty printing of a list of multivariate polynomials.
terms.mpoly

Extract the terms of a multivariate polynomial.
print.mpoly

Pretty printing of multivariate polynomials.
predicates

mpoly predicate functions
partitions

Enumerate the partitions of an integer
plug

Switch indeterminates in a polynomial
tuples

Determine all n-tuples using the elements of a set.
mpolyArithmetic

Arithmetic with multivariate polynomials
mpolyList

Define a collection of multivariate polynomials.
vars

Determine the variables in a mpoly object.
solve_unipoly

Solve a univariate mpoly with polyroot
swap

Swap polynomial indeterminates
bernstein-approx

Bernstein polynomial approximation
basis_monomials

Enumerate basis monomials
bezier_function

Bezier function
LCM

Compute the least common multiple of two numbers.
bezier

Bezier polynomials
chebyshev

Chebyshev polynomials
as.mpoly

Convert an object to an mpoly
as-function

Change polynomials into functions.
bernstein

Bernstein polynomials
burst

Enumerate integer r-vectors summing to n
insert

Insert an element into a vector.
jacobi

Jacobi polynomials
gradient

Compute gradient of a multivariate polynomial.
laguerre

Generalized Laguerre polynomials
homogenize

Homogenize a polynomial
eq_mp

Convert an equation to a polynomial
hermite

Hermite polynomials
is.wholenumber

Test whether an object is a whole number