Learn R Programming

mppR (version 1.5.0)

mpp_perm: QTL significance threshold by permutation

Description

Determination of an empirical null distribution of the QTL significance threshold for a MPP QTL analysis using permutation test (Churchill and Doerge, 1994).

Usage

mpp_perm(
  mppData,
  trait = 1,
  Q.eff = "cr",
  N = 1000,
  q.val = 0.95,
  verbose = TRUE,
  n.cores = 1
)

Value

Return:

List with the following object:

max.pval

Vector of the highest genome-wide -log10(p-values).

q.val

Quantile values from the QTL significance threshold null distribution.

seed

Numeric vector of random generated seed values for each permutation.

Arguments

mppData

An object of class mppData.

trait

Numerical or character indicator to specify which trait of the mppData object should be used. Default = 1.

Q.eff

Character expression indicating the assumption concerning the QTL effects: 1) "cr" for cross-specific; 2) "par" for parental; 3) "anc" for ancestral; 4) "biall" for a bi-allelic. For more details see mpp_SIM. Default = "cr".

N

Number of permutations. Default = 1000.

q.val

Single numeric value or vector of desired quantiles from the null distribution. Default = 0.95.

verbose

Logical value indicating if progression of the function should be printed. It will not affect the printing of the other functions called by mpp_perm(), especially the printing of asreml(). Default = TRUE.

n.cores

Numeric. Specify here the number of cores you like to use. Default = 1.

Author

Vincent Garin

Details

Performs N permutations of the trait data and computes each time a genome-wide QTL profile. For every run, it stores the highest -log10(p-val). These values can be used to build a null distribution for the QTL significance threshold. Quantile values can be determined from the previous distribution. For more details about the different possible models and their assumptions see mpp_SIM documentation.

References

Churchill, G. A., & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138(3), 963-971.

See Also

mpp_SIM

Examples

Run this code

data(mppData)

Perm <- mpp_perm(mppData = mppData, Q.eff = "cr", N = 5)


Run the code above in your browser using DataLab