Learn R Programming

mpwR (version 0.1.5.1)

plot_DC_stacked_barplot: Summary Barplot - Data Completeness

Description

Plot number of identifications per missing values as stacked barplot.

Usage

plot_DC_stacked_barplot(
  input_list,
  level = c("Precursor.IDs", "Peptide.IDs", "Protein.IDs", "ProteinGroup.IDs"),
  label = c("absolute", "percentage")
)

Value

This function returns a stacked barplot.

Arguments

input_list

A list with data frames and respective level information.

level

Character string. Choose between "Precursor.IDs", "Peptide.IDs", "Protein.IDs" or "ProteinGroup.IDs" for corresponding level. Default is "Precursor.IDs".

label

Character string. Choose between "absolute" or "percentage". Default is "absolute".

Author

Oliver Kardell

Details

The analyses are summarized in a stacked barplot displaying information about the number of achieved identifications per missing values.

Examples

Run this code
# Load libraries
library(magrittr)
library(dplyr)
library(tibble)

# Example data
data <- list(
 "A" = tibble::tibble(
   Analysis = c("A", "A", "A"),
   Nr.Missing.Values = c(2, 1, 0),
   Precursor.IDs = c(50, 200, 4500),
   Peptide.IDs = c(30, 190, 3000),
   Protein.IDs = c(20, 40, 600),
   ProteinGroup.IDs = c(15, 30, 450),
   Profile = c("unique", "shared with at least 50%", "complete")
 ),
 "B" = tibble::tibble(
   Analysis = c("B", "B", "B"),
   Nr.Missing.Values = c(2, 1, 0),
   Precursor.IDs = c(50, 180, 4600),
   Peptide.IDs = c(50, 170, 3200),
   Protein.IDs = c(20, 40, 500),
   ProteinGroup.IDs = c(15, 30, 400),
   Profile = c("unique", "shared with at least 50%", "complete")
 )
)

# Plot
plot_DC_stacked_barplot(
  input_list = data,
  level = "Precursor.IDs",
  label = "absolute"
)

Run the code above in your browser using DataLab