This function gives the EBLUP and MSE based on a multivariate Fay-Herriot model (model 1)
eblupMFH1(
formula,
vardir,
samevar = FALSE,
MAXITER = 100,
PRECISION = 1e-04,
data
)
an object of class list of formula, describe the model to be fitted
if data is available, it is vector containing name of sampling variances of direct estimators. if not, it is data frame of sampling variances of direct estimators. The order is : var1, var2, . , var(k) , cov12, . cov1k, cov23, . , cov(k-1)(k)
logical input, true if variances of the data are same, Default: FALSE
maximum number of iterations allowed in the Fisher-scoring algorithm, Default: 100
convergence tolerance limit for the Fisher-scoring algorithm, Default: 1e-4
dataframe containing the variables named in formula
and vardir
The function returns a list with the following objects:
a dataframe with the values of the EBLUP estimators
a dataframe with the estimated mean squared errors of the EBLUPs for the small domains
a dataframe with the values of the random effect estimators
a block diagonal matrix composed of sampling errors
a list containing the following objects:
# NOT RUN {
## Load dataset
data(datasae1)
# Compute EBLUP and MSE of Y1 Y2 and Y3 based on Model 1
# using auxiliary variables X1 and X2 for each dependent variable
## Using parameter 'data'
Fo <- list(f1=Y1~X1+X2,
f2=Y2~X1+X2,
f3=Y3~X1+X2)
vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")
m1 <- eblupMFH1(Fo, vardir, data=datasae1)
## Without parameter 'data'
Fo <- list(f1=datasae1$Y1~datasae1$X1+datasae1$X2,
f2=datasae1$Y2~datasae1$X1+datasae1$X2,
f3=datasae1$Y3~datasae1$X1+datasae1$X2)
vardir <- datasae1[,c("v1", "v2", "v3", "v12", "v13", "v23")]
m1 <- eblupMFH1(Fo, vardir)
m1$eblup # see the EBLUP estimators
m1$MSE # see MSE of EBLUP estimators
# }
Run the code above in your browser using DataLab