
Adaptive MCP-Net
amnet(
x,
y,
family = c("gaussian", "binomial", "poisson", "cox"),
init = c("mnet", "ridge"),
gammas = 3,
alphas = seq(0.05, 0.95, 0.05),
tune = c("cv", "ebic", "bic", "aic"),
nfolds = 5L,
ebic.gamma = 1,
scale = 1,
eps = 1e-04,
max.iter = 10000L,
penalty.factor.init = rep(1, ncol(x)),
seed = 1001,
parallel = FALSE,
verbose = FALSE
)
List of model coefficients, ncvreg
model object,
and the optimal parameter set.
Data matrix.
Response vector if family
is "gaussian"
,
"binomial"
, or "poisson"
. If family
is
"cox"
, a response matrix created by Surv
.
Model family, can be "gaussian"
,
"binomial"
, "poisson"
, or "cox"
.
Type of the penalty used in the initial
estimation step. Can be "mnet"
or "ridge"
.
Vector of candidate gamma
s (the concavity parameter)
to use in MCP-Net. Default is 3
.
Vector of candidate alpha
s to use in MCP-Net.
Parameter tuning method for each estimation step.
Possible options are "cv"
, "ebic"
, "bic"
,
and "aic"
. Default is "cv"
.
Fold numbers of cross-validation when tune = "cv"
.
Parameter for Extended BIC penalizing
size of the model space when tune = "ebic"
,
default is 1
. For details, see Chen and Chen (2008).
Scaling factor for adaptive weights:
weights = coefficients^(-scale)
.
Convergence threshold to use in MCP-net.
Maximum number of iterations to use in MCP-net.
The multiplicative factor for the penalty
applied to each coefficient in the initial estimation step. This is
useful for incorporating prior information about variable weights,
for example, emphasizing specific clinical variables. To make certain
variables more likely to be selected, assign a smaller value.
Default is rep(1, ncol(x))
.
Random seed for cross-validation fold division.
Logical. Enable parallel parameter tuning or not,
default is FALSE
. To enable parallel tuning, load the
doParallel
package and run registerDoParallel()
with the number of CPU cores before calling this function.
Should we print out the estimation progress?
Nan Xiao <https://nanx.me>
dat <- msaenet.sim.gaussian(
n = 150, p = 500, rho = 0.6,
coef = rep(1, 5), snr = 2, p.train = 0.7,
seed = 1001
)
amnet.fit <- amnet(
dat$x.tr, dat$y.tr,
alphas = seq(0.2, 0.8, 0.2), seed = 1002
)
print(amnet.fit)
msaenet.nzv(amnet.fit)
msaenet.fp(amnet.fit, 1:5)
msaenet.tp(amnet.fit, 1:5)
amnet.pred <- predict(amnet.fit, dat$x.te)
msaenet.rmse(dat$y.te, amnet.pred)
plot(amnet.fit)
Run the code above in your browser using DataLab