Learn R Programming

msir (version 1.1)

msir.bic: BIC-type criterion for dimensionality

Description

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

msir.bic(object, type = 1, plot = FALSE)

bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))

Arguments

object
a 'msir' object
plot
if TRUE a plot of the criterion is shown.
M
the kernel matrix. See details below.
x
the predictors data matrix. See details below.
type
See details below.
nslices
the number of slices. See details below.
tol
a tolerance value

Value

  • Returns a list with components:
  • evalueseigenvalues
  • llog-likelihood
  • critBIC-type criterion
  • dselected dimensionality
  • The msir.bic also assign the above information to the corresponding 'msir' object.

Details

This BIC-type criterion for the determination of the structural dimension selects $d$ as the maximizer of $$G(d) = l(d) - Penalty(p,d,n)$$ where $l(d)$ is the log-likelihood for dimensions up to $d$, $p$ is the number of predictors, and $n$ is the sample size. The term $Penalty(p,d,n)$ is the type of penalty to be used: ll{ type = 1 $Penalty(p,d,n) = -(p-d) \log(n)$ type = 2 $Penalty(p,d,n) = 0.5 C d (2p-d+1)$ where $C = (0.5 \log(n) + 0.1 n^(1/3))/2 nslices/n$ type = 3 $Penalty(p,d,n) = 0.5 C d (2p-d+1)$ where $C = \log(n) nslices/n$ type = 3 $Penalty(p,d,n) = 1/2 d \log(n)$ }

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA. Zhu, Zhu (2007) "On kernel method for SAVE", Journal of Multivariate Analysis.

See Also

msir

Examples

Run this code
# 1-dimensional symmetric response curve
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = mvrnorm(n, rep(0,p), diag(p))
y = (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR = msir(x, y)
msir.bic(MSIR, plot = TRUE)
summary(MSIR)
msir.bic(MSIR, type = 3, plot = TRUE)
summary(MSIR)

Run the code above in your browser using DataLab