
Nonparametric estimation of mean function with variability bands.
loess.sd(x, y = NULL, nsigma = 1, ...)panel.loess(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
col.smooth = "red", span = 2/3, degree = 2, nsigma = 1, ...)
a vector of values for the predictor variable
a vector of values for the response variable
a multiplier for the standard deviation function.
numeric or character codes for the color(s), point type and size of points; see also par
.
color to be used by lines
for drawing the smooths.
smoothing parameter for loess
.
the degree of the polynomials to be used, see loess
.
further argument passed to the function loess
.
The function loess.sd
computes the loess smooth for the mean function and the mean plus and minus k
times the standard deviation function.
The function panel.loess
can be used to add to a scatterplot matrix panel a smoothing of mean function using loess with variability bands at plus and minus nsigmas
times the standard deviation.
Weisberg, S. (2005) Applied Linear Regression, 3rd ed., Wiley, New York, pp. 275-278.
# NOT RUN {
data(cars)
plot(cars, main = "lowess.sd(cars)")
lines(l <- loess.sd(cars))
lines(l$x, l$upper, lty=2)
lines(l$x, l$lower, lty=2)
# }
Run the code above in your browser using DataLab