Learn R Programming

msir (version 1.3.3)

msir.bic: BIC-type criterion for dimensionality

Description

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

msir.bic(object, type = 1, plot = FALSE)

bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))

Arguments

object

a 'msir' object

plot

if TRUE a plot of the criterion is shown.

M

the kernel matrix. See details below.

x

the predictors data matrix. See details below.

type

See details below.

nslices

the number of slices. See details below.

tol

a tolerance value

Value

Returns a list with components:

evalues

eigenvalues

l

log-likelihood

crit

BIC-type criterion

d

selected dimensionality

The msir.bic also assign the above information to the corresponding 'msir' object.

Details

This BIC-type criterion for the determination of the structural dimension selects \(d\) as the maximizer of $$G(d) = l(d) - Penalty(p,d,n)$$ where \(l(d)\) is the log-likelihood for dimensions up to \(d\), \(p\) is the number of predictors, and \(n\) is the sample size. The term \(Penalty(p,d,n)\) is the type of penalty to be used:

  • type = 1: \(Penalty(p,d,n) = -(p-d) \log(n)\)

  • type = 2: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = (0.5 \log(n) + 0.1 n^(1/3))/2 nslices/n\)

  • type = 3: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = \log(n) nslices/n\)

  • type = 4 \(Penalty(p,d,n) = 1/2 d \log(n)\)

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA. Zhu, Zhu (2007) "On kernel method for SAVE", Journal of Multivariate Analysis.

See Also

msir

Examples

Run this code
# NOT RUN {
# 1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.bic(MSIR, plot = TRUE)
summary(MSIR)
msir.bic(MSIR, type = 3, plot = TRUE)
summary(MSIR)
# }

Run the code above in your browser using DataLab