Learn R Programming

msmsTests (version 1.10.0)

pval.by.fc: Table of cumulative frequencies of p-values by log fold change bins

Description

Given the set of p-values and log fold changes that result from a test, computes a table of cumulative frequencies of features by p-values in bins of log fold changes.

Usage

pval.by.fc(pvals,lfc)

Arguments

lfc
The log fold changes estimated from the tests.
pvals
The p-values, adjusted or not, obtained from the tests.

Value

A matrix of cumulated frequencies with descriptive row and column names.

References

Josep Gregori, Laura Villareal, Alex Sanchez, Jose Baselga, Josep Villanueva (2013). An Effect Size Filter Improves the Reproducibility in Spectral Counting-based Comparative Proteomics. Journal of Proteomics, DOI http://dx.doi.org/10.1016/j.jprot.2013.05.030

See Also

test.results

Examples

Run this code
library(msmsTests)
data(msms.spk)
# Subset
treat <- pData(msms.spk)
jdx <- which(treat=="U200" | treat=="U600")
e <- msms.spk[,jdx]
pData(e)$treat <- treat[jdx,1,drop=TRUE]
# Pre-process expression matrix
e <- pp.msms.data(e)
# Models and normalizing condition
null.f <- "y~1"
alt.f <- "y~treat"
div <- apply(exprs(e),2,sum)
#Test
res <- msms.glm.pois(e,alt.f,null.f,div=div)
# Post-test filter
lst <- test.results(res,e,pData(e)$treat,"U600","U200",div,
                    alpha=0.05,minSpC=2,minLFC=1,
                    method="BH")

##  On all features, with multitest adjusted p-values
pval.by.fc(lst$tres$adjp, lst$tres$LogFC)

### On all features deemed significant and biologically relevant
flags <- lst$tres$DEP
pval.by.fc(lst$tres$adjp[flags], lst$tres$LogFC[flags])

Run the code above in your browser using DataLab