# NOT RUN {
## Dichotomous models ##
# Generation of an item bank under 3PL with 100 items
m.3PL <- genDichoMatrix(100, model = "3PL")
m.3PL <- as.matrix(m.3PL)
# Creation of a response pattern (true ability level 0)
set.seed(1)
x <- genPattern(0, m.3PL)
# EAP estimation, standard normal prior distribution
eapEst(m.3PL, x)
# EAP estimation, uniform prior distribution upon range [-2,2]
eapEst(m.3PL, x, priorDist = "unif", priorPar = c(-2, 2))
# EAP estimation, Jeffreys' prior distribution
eapEst(m.3PL, x, priorDist = "Jeffreys")
# Changing the integration settings
eapEst(m.3PL, x, nqp = 100)
# }
# NOT RUN {
## Polytomous models ##
# Generation of an item bank under GRM with 100 items and at most 4 categories
m.GRM <- genPolyMatrix(100, 4, "GRM")
m.GRM <- as.matrix(m.GRM)
# Creation of a response pattern (true ability level 0)
set.seed(1)
x <- genPattern(0, m.GRM, model = "GRM")
# EAP estimation, standard normal prior distribution
eapEst(m.GRM, x, model = "GRM")
# EAP estimation, uniform prior distribution upon range [-2,2]
eapEst(m.GRM, x, model = "GRM", priorDist = "unif", priorPar = c(-2, 2))
# EAP estimation, Jeffreys' prior distribution
eapEst(m.GRM, x, model = "GRM", priorDist = "Jeffreys")
# Generation of a item bank under PCM with 20 items and at most 3 categories
m.PCM <- genPolyMatrix(20, 3, "PCM")
m.PCM <- as.matrix(m.PCM)
# Creation of a response pattern (true ability level 0)
set.seed(1)
x <- genPattern(0, m.PCM, model = "PCM")
# EAP estimation, standard normal prior distribution
eapEst(m.PCM, x, model = "PCM")
# EAP estimation, uniform prior distribution upon range [-2,2]
eapEst(m.PCM, x, model = "PCM", priorDist = "unif", priorPar = c(-2, 2))
# EAP estimation, Jeffreys' prior distribution
eapEst(m.PCM, x, model = "PCM", priorDist = "Jeffreys")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab