Learn R Programming

mstate (version 0.2.6)

plot.msfit: Plot method for an msfit object

Description

Plot method for an object of class 'msfit'. It plots the estimated cumulative transition intensities in the multi-state model.

Usage

## S3 method for class 'msfit':
plot(x,type=c("single","separate"),cols,
    xlab="Time",ylab="Cumulative hazard",ylim,lwd,lty,
    legend,legend.pos,bty="o",...)

Arguments

x
Object of class 'msfit', containing estimated cumulative transition intensities for all transitions in a multi-state model
type
One of "single" (default) or "separate"; in case of "single", all estimated cumulative hazards are drawn in a single plot, in case of "separate", separate plots are shown for the estimated trans
cols
A vector specifying colors for the different transitions; default is 1:K (K no of transitions), when type="single", and 1 (black), when type="separate"
xlab
A title for the x-axis; default is "Time"
ylab
A title for the y-axis; default is "Cumulative hazard"
ylim
The y limits of the plot(s); if ylim is specified for type="separate", then all plots use the same ylim for y limits
lwd
The line width, see par; default is 1
lty
The line type, see par; default is 1
legend
Character vector of length equal to the number of transitions, to be used in a legend; if missing, numbers will be used; this and the legend arguments following are ignored when type="separate"
legend.pos
The position of the legend, see legend; default is "topleft"
bty
The box type of the legend, see legend
...
Further arguments to plot

Value

  • No return value

See Also

msfit

Examples

Run this code
# transition matrix for illness-death model
tmat <- trans.illdeath()
# data in wide format, for transition 1 this is dataset E1 of
# Therneau & Grambsch (2000)
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
        dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
        x1=c(1,1,1,0,0,0),x2=c(6:1))
# data in long format using msprep
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
		data=tg,keep=c("x1","x2"),trans=tmat)
# events
events(tglong)
table(tglong$status,tglong$to,tglong$from)
# expanded covariates
tglong <- expand.covs(tglong,c("x1","x2"))
# Cox model with different covariate
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
	data=tglong,method="breslow")
summary(cx)
# new data, to check whether results are the same for transition 1 as
# those in appendix E.1 of Therneau & Grambsch (2000)
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
msf <- msfit(cx,newdata,trans=tmat)
# standard plot
plot(msf)
# specifying line width, color, and legend
plot(msf,lwd=2,col=c("darkgreen","darkblue","darkred"),legend=c("1->2","1->3","2->3"))
# separate plots
par(mfrow=c(2,2))
plot(msf,type="sep",lwd=2)
par(mfrow=c(1,1))

Run the code above in your browser using DataLab