Learn R Programming

msu (version 0.0.1)

Multivariate Symmetric Uncertainty and Other Measurements

Description

Estimators for multivariate symmetrical uncertainty based on the work of Gustavo Sosa et al. (2016) , total correlation, information gain and symmetrical uncertainty of categorical variables.

Copy Link

Version

Install

install.packages('msu')

Monthly Downloads

157

Version

0.0.1

License

GPL-3 | file LICENSE

Maintainer

Elias Maciel

Last Published

September 30th, 2017

Functions in msu (0.0.1)

multivar_joint_shannon_entropy

Estimation of joint Shannon entropy for a set of categorical variables.
new_informative_variable

Create an informative uniform categorical random variable.
shannon_entropy

Estimation of Shannon entropy for a categorical variable.
symmetrical_uncertainty

Estimating Symmetrical Uncertainty of two categorical variables.
rel_freq

Relative frequency of values of a categorical variable.
sample_size

Estimate the sample size for a categorical variable.
new_variable

Create a uniform categorical random variable.
new_xor_variables

Create a set of categorical variables using the logical XOR operator.
categorical_sample_size

Estimate the sample size for a variable in function of its categories.
information_gain

Estimating information gain between two categorical variables.
total_correlation

Estimation of total correlation for a set of categorical random variables.
joint_shannon_entropy

Estimation of the Joint Shannon entropy for two categorical variables.
msu

Estimating Multivariate Symmetrical Uncertainty.