# iris data set
data(iris)
dat <- subset(iris, select = -Species)
cl <- iris$Species
## PCALDA with cross-validation
pars <- valipars(sampling="cv",niter = 6, nreps = 5)
binpcalda <- binest(dat,cl,choices=c("setosa"), method="pcalda", pars = pars)
## SVM with leave-one-out cross-validation. SVM kernel is 'linear'.
pars <- valipars(sampling="loocv")
binsvm <- binest(dat,cl,choices=c("setosa","virginica"), method="svm",
pars = pars, kernel="linear")
## randomForest with bootstrap
pars <- valipars(sampling="boot",niter = 5, nreps = 5)
binrf <- binest(dat,cl,choices=c("setosa","virginica"),
method="randomForest", pars = pars)
## KNN with randomised validation. The number of neighbours is 3.
pars <- valipars(sampling="rand",niter = 5, nreps = 5)
binknn <- binest(dat,cl,choices = list(c("setosa","virginica"),
c("virginica","versicolor")),
method="knn",pars = pars, k = 3)
Run the code above in your browser using DataLab