## iris data set
data(iris)
x <- subset(iris, select = -Species)
y <- iris$Species
## 10 bootstrap training samples
pars <- valipars(sampling = "boot", niter = 1, nreps = 10)
tr.idx <- trainind(y, pars=pars)[[1]]
## bootstrap error rate
err <- sapply(tr.idx, function(i){
pred <- classifier(x[i,,drop = FALSE],y[i],x[-i,,drop = FALSE],y[-i],
method = "knn")$err
})
## average bootstrap error rate
err <- mean(err)
## apparent error rate
resub <- classifier(x,y,method = "knn")
##
err.boot <- boot.err(err, resub)
Run the code above in your browser using DataLab