if (FALSE) {
library(lattice)
data(abr1)
dat <- preproc(abr1$pos[,200:400], method="log10")
cls <- factor(abr1$fact$class)
tmp <- dat.sel(dat, cls, choices=c("1","2"))
x <- tmp[[1]]$dat
y <- tmp[[1]]$cls
fs.method <- c("fs.anova","fs.rf","fs.rfe")
fs.pars <- valipars(sampling="cv",niter=10,nreps=5)
fs <- feat.mfs(x, y, fs.method, fs.pars) ## with resampling
names(fs)
## frequency, consensus and stabilities of feature selection
fs.stab <- feat.mfs.stab(fs)
print(fs.stab$fs.cons,digits=2,na.print="")
## plot feature selection frequency
freq <- fs.stab$fs.freq
dotplot(freq$fs.anova, type="o", main="Feature Selection Frequencies")
barchart(freq$fs.anova)
## rank aggregation
fs.agg <- feat.agg(fs$fs.rank)
## stats table and plotting
fs.stats <- fs$fs.stats
tmp <- feat.mfs.stats(fs.stats, cumu.plot = TRUE)
tmp$stats.p
fs.tab <- tmp$stats.tab
## convert to matrix
fs.tab <- list2df(un.list(fs.tab))
## without resampling
fs.1 <- feat.mfs(x, y, method=fs.method, is.resam = FALSE)
}
Run the code above in your browser using DataLab