## prepare data set
data(abr1)
cls <- factor(abr1$fact$class)
dat <- abr1$pos
## dat <- abr1$pos[,110:1930]
## fill zeros with NAs
dat <- mv.zene(dat)
## missing values summary
mv <- mv.stats(dat, grp=cls)
## mv ## View the missing value pattern
## filter missing value variables
## dim(dat)
dat <- dat[,mv$mv.var < 0.15]
## dim(dat)
## fill NAs with mean
dat <- mv.fill(dat,method="mean")
## log transformation
dat <- preproc(dat, method="log10")
## select class "1" and "2" for feature ranking
ind <- which(cls==1 | cls==2)
x <- dat[ind,,drop=FALSE]
y <- cls[ind, drop=TRUE]
## feature selection
pars <- valipars(sampling="boot",niter=2,nreps=5)
tr.idx <- trainind(y,pars=pars)
z <- feat.rank.re(x,y,method="fs.auc",pars = pars)
names(z)
Run the code above in your browser using DataLab