data(abr1)
dat <- abr1$pos
x <- preproc(dat[,110:500], method="log10")
y <- factor(abr1$fact$class)
dat <- dat.sel(x, y, choices=c("1","2"))
x.1 <- dat[[1]]$dat
y.1 <- dat[[1]]$cls
len <- c(1:20,seq(25,50,5),seq(60,90,10),seq(100,300,50))
pars <- valipars(sampling="boot",niter=2, nreps=4)
res <- frankvali(x.1,y.1,cl.method = "knn", fs.method="fs.auc",
fs.len=len, pars = pars)
res
summary(res)
boxplot(res)
if (FALSE) {
## or apply feature selection with re-sampling procedure at first
fs <- feat.rank.re(x.1,y.1,method="fs.auc",pars = pars)
## then estimate error of feature selection.
res.1 <- frankvali(x.1,y.1,cl.method = "knn", fs.order=fs$fs.order,
fs.len=len, pars = pars)
res.1
## use formula
data.bin <- data.frame(y.1,x.1)
pars <- valipars(sampling="cv",niter=2,nreps=4)
res.2 <- frankvali(y.1~., data=data.bin,fs.method="fs.rfe",fs.len=len,
cl.method = "knn",pars = pars)
res.2
## examples of fs.cl and fs.cl.1
fs <- fs.rf(x.1, y.1)
res.3 <- fs.cl(x.1,y.1,fs.order=fs$fs.order, fs.len=len,
cl.method = "svm", pars = pars, all.fs=TRUE)
ord <- fs$fs.order[1:50]
## aggregated features
res.4 <- fs.cl.1(x.1,y.1,fs.order=ord, cl.method = "svm", pars = pars,
agg_f=TRUE)
## individual feature
res.5 <- fs.cl.1(x.1,y.1,fs.order=ord, cl.method = "svm", pars = pars,
agg_f=FALSE)
}
Run the code above in your browser using DataLab