## iris data set
data(iris)
dat <- subset(iris, select = -Species)
cl <- iris$Species
method <- c("svm","pcalda")
pars <- valipars(sampling="cv",niter = 10, nreps = 5)
res <- mbinest(dat,cl,choices=c("setosa"), method=method,
pars = pars, kernel="linear")
## combine prediction accuracy, AUC and margin
z <- round(cbind(res$acc,res$auc,res$mar),digits=3)
colnames(z) <- c(paste(method,".acc", sep=""),paste(method,".auc", sep=""),
paste(method,".mar", sep=""))
Run the code above in your browser using DataLab