data(iris3)
tr <- sample(1:50, 25)
train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
## model fit using plsc and plslda without tuning of ncomp
(z.plsc <- plsc(train, cl))
(z.plslda <- plslda(train, cl))
## predict for test data
pred.plsc <- predict(z.plsc, test)
pred.plslda <- predict(z.plslda, test)
## plot the projected test data.
grpplot(pred.plsc$x, pred.plsc$class, main="PLSC: Iris")
grpplot(pred.plslda$x, pred.plslda$class, main="PLSLDA: Iris")
Run the code above in your browser using DataLab