if (FALSE) {
data(abr1)
cl <- factor(abr1$fact$class)
dat <- preproc(abr1$pos , y=cl, method=c("log10"),add=1)[,110:500]
## divide data as training and test data
idx <- sample(1:nrow(dat), round((2/3)*nrow(dat)), replace=FALSE)
## construct train and test data
train.dat <- dat[idx,]
train.t <- cl[idx]
test.dat <- dat[-idx,]
test.t <- cl[-idx]
## tune the best number of components
ncomp.plsc <- tune.plsc(dat,cl, pls="simpls",ncomp=20)
ncomp.plslda <- tune.plslda(dat,cl, pls="simpls",ncomp=20)
ncomp.pcalda <- tune.pcalda(dat,cl, ncomp=60)
## model fit
(z.plsc <- plsc(train.dat,train.t, ncomp=ncomp.plsc$ncomp))
(z.plslda <- plslda(train.dat,train.t, ncomp=ncomp.plslda$ncomp))
(z.pcalda <- pcalda(train.dat,train.t, ncomp=ncomp.pcalda$ncomp))
## or indirect use tune function in model fit
z.plsc <- plsc(train.dat,train.t, ncomp=20, tune=TRUE)
z.plslda <- plslda(train.dat,train.t, ncomp=20, tune=TRUE)
z.pcalda <- pcalda(train.dat,train.t, ncomp=60, tune=TRUE)
## predict test data
pred.plsc <- predict(z.plsc, test.dat)$class
pred.plslda <- predict(z.plslda, test.dat)$class
pred.pcalda <- predict(z.pcalda, test.dat)$class
## classification rate and confusion matrix
cl.rate(test.t, pred.plsc)
cl.rate(test.t, pred.plslda)
cl.rate(test.t, pred.pcalda)
}
Run the code above in your browser using DataLab