Learn R Programming

The mt R package

Overview

This package provides functions for metabolomics data analysis: data preprocessing, orthogonal signal correction, PCA analysis, PCA-DA analysis, PLS-DA analysis, classification, feature selection, correlation analysis, data visualisation and re-sampling strategies.

Installation from CRAN

install.packages("mt")

Installation from github

library(devtools)
install_github("wanchanglin/mt")

Usage

See the help pages of the package for details.

Copy Link

Version

Install

install.packages('mt')

Monthly Downloads

348

Version

2.0-1.21

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Wanchang Lin

Last Published

August 19th, 2025

Functions in mt (2.0-1.21)

fs.kruskal

Feature Selection Using Kruskal-Wallis Test
fs.rfe

Feature Selection Using SVM-RFE
fs.welch

Feature Selection Using Welch Test
fs.pca

Feature Selection by PCA
fs.relief

Feature Selection Using RELIEF Method
fs.rf

Feature Selection Using Random Forests (RF)
mc.fried

Multiple Comparison by 'Friedman Test' and Pairwise Comparison by 'Wilcoxon Test'
fs.bw

Feature Selection Using Between-Group to Within-Group (BW) Ratio
mbinest

Binary Classification by Multiple Classifier
fs.pls

Feature Selection Using PLS
mdsplot

Plot Classical Multidimensional Scaling
mc.norm

Normality Test by Shapiro-Wilk Test
mc.anova

Multiple Comparison by 'ANOVA' and Pairwise Comparison by 'HSDTukey Test'
fs.wilcox

Feature Selection Using Wilcoxon Test
fs.snr

Feature Selection Using Signal-to-Noise Ratio (SNR)
maccest

Estimation of Multiple Classification Accuracy
list.util

List Manipulation Utilities
get.fs.len

Get Length of Feature Subset for Validation
mv.util

Missing Value Utilities
grpplot

Plot Matrix-Like Object by Group
pcalda

Classification with PCADA
osc_wold

Orthogonal Signal Correction (OSC) Approach by Wold et al.
panel.smooth.line

Panel Function for Plotting Regression Line
osc_sjoblom

Orthogonal Signal Correction (OSC) Approach by Sjoblom et al.
panel.elli

Panel Function for Plotting Ellipse and outlier
osc_wise

Orthogonal Signal Correction (OSC) Approach by Wise and Gallagher.
pval.util

P-values Utilities
predict.plsc

Predict Method for Class 'plsc' or 'plslda'
plot.maccest

Plot Method for Class 'maccest'
pcaplot

Plot Function for PCA with Grouped Values
pca.outlier

Outlier detection by PCA
plot.accest

Plot Method for Class 'accest'
osc

Orthogonal Signal Correction (OSC)
plot.plsc

Plot Method for Class 'plsc' or 'plslda'
predict.osc

Predict Method for Class 'osc'
save.tab

Save List of Data Frame or Matrix into CSV File
predict.pcalda

Predict Method for Class 'pcalda'
plsc

Classification with PLSDA
valipars

Generate Control Parameters for Resampling
tune.func

Functions for Tuning Appropriate Number of Components
trainind

Generate Index of Training Samples
plot.pcalda

Plot Method for Class 'pcalda'
stats.util

Statistical Summary Utilities for Two-Classes Data
preproc

Pre-process Data Set
binest

Binary Classification
cor.util

Correlation Analysis Utilities
accest

Estimate Classification Accuracy By Resampling Method
abr1

abr1 Data
boot.err

Calculate .632 and .632+ Bootstrap Error Rate
boxplot.maccest

Boxplot Method for Class 'maccest'
boxplot.frankvali

Boxplot Method for Class 'frankvali'
feat.rank.re

Feature Ranking with Resampling Method
feat.mfs

Multiple Feature Selection
dat.sel

Generate Pairwise Data Set
cl.rate

Assess Classification Performances
classifier

Wrapper Function for Classifiers
feat.agg

Rank aggregation by Borda count algorithm
fs.anova

Feature Selection Using ANOVA
frank.err

Feature Ranking and Validation on Feature Subset
data.visualisation

Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
feat.freq

Frequency and Stability of Feature Selection
fs.auc

Feature Selection Using Area under Receiver Operating Curve (AUC)
frankvali

Estimates Feature Ranking Error Rate with Resampling
df.util

Summary Utilities