
Last chance! 50% off unlimited learning
Sale ends in
mtkNativeEvaluator
classmtkNativeEvaluator
class is a sub-class of the class mtkEvaluator
used to manage
the simulation task implemented locally (i.e. tasks don't need to call services from the Web). It provides all the slots and methods defined in the class mtkEvaluator
.
mtkEvaluator
mtkNativeEvaluator
model
:ANY
) a string, an R fonction, or NULL to inform the model to simulate.name
:character
) always takes the string "evaluate".protocol
:character
) a string to name the protocol used to run the process: http, system, R, etc. Here, it always takes "R".site
:character
) a string to indicate where the service is located. Here, it always takes "mtk".service
:character
) a string to name the service to invoke.parameters
:vector
) a vector of [mtkParameter
] containing the parameters to pass while calling the service.ready
:logical
) a logical to tell if the process is ready to run.state
:logical
) a logical to tell if the results produced by the process are available and ready to be consumed.result
:ANY
) a data holder to hold the results produced by the processsetName
setParameters
getParameters
is.ready
setReady
is.ready
setReady
getResult
mtkEvaluatorResult
].getData
serializeOn
run
summary
print
plot
report
mtkNativeEvaluator
class from the following situations:
1)
2) 3) the experimental design is produced off-line and available as a data.frame. We can construct an object of the mtkNativeEvaluator
class from the following situations:
mtk
, une bibliothèque R pour l'exploration numérique des modèles.
In: Analyse de sensibilité et exploration de modèles : Application aux sciences de la nature et de l'environnement
(R. Faivre, B. Iooss, S. Mahévas, D. Makowski, H. Monod, Eds). Editions Quae, Versailles.## 1) Create a model simulation with the model "Ishigami" implemented in the package "mtk"
evaluator <- mtkNativeEvaluator(model="Ishigami")
## 2) Create a model simulation with a R function implemented outside the package "mtk"
# a) Create a R function to represent the model of population
ME <- function(K, Y0, a, t=5, ...){
res <- exp(-a*t)
res <- Y0+res*(K-Y0)
res <- K*Y0/res
out <- as.integer(res)
return(out)
}
# b) Do the sensitivity analysis for the function "ME"
K <- make.mtkFactor(name="K", nominal=400, distribName="unif",
distribPara=list(min=100, max=1000))
Y0 <- make.mtkFactor(name="Y0", nominal=20, distribName="unif",
distribPara=list(min=1, max=40))
a <- make.mtkFactor(name="a", nominal=0.1, distribName="unif",
distribPara=list(min=0.05, max=0.2))
factors <- mtkExpFactors(list(K,Y0,a))
plan <- mtkNativeDesigner ("BasicMonteCarlo",
information=c(size=500))
model <- mtkNativeEvaluator(model=ME, information=c(t=5))
index<- mtkNativeAnalyser("Regression", information=c(nboot=20) )
expt <- mtkExpWorkflow( expFactors=factors,
processesVector=c(
design= plan,
evaluate= model,
analyze= index)
)
run(expt)
summary(expt)
## 3) Import the results of model simulation produced off-line
## into an object of mtkNativeEvaluator
data <- data.frame()
model <- mtkNativeEvaluator(Y=data,
information = list(model="Ishigami"))
Run the code above in your browser using DataLab