set.seed(0, kind = "L'Ecuyer-CMRG")
## Consider a 5-task multi-task learning problem in the setting "MTL-1"
data_list <- data_generation(K = 5, outlier_K = 1, simulation_no = "MTL-1", h_w = 0.1,
h_mu = 1, n = 50) # generate the data
fit <- mtlgmm(x = data_list$data$x, C1_w = 0.05, C1_mu = 0.2, C1_beta = 0.2,
C2_w = 0.05, C2_mu = 0.2, C2_beta = 0.2, kappa = 1/3, initial_method = "EM",
trim = 0.1, lambda_choice = "fixed", step_size = "lipschitz")
## Initialize the estimators of GMM parameters on each task.
fitted_values_EM <- initialize(data_list$data$x,
"EM") # initilize the estimates by single-task EM algorithm
fitted_values_kmeans <- initialize(data_list$data$x,
"EM") # initilize the estimates by single-task k-means
Run the code above in your browser using DataLab