```
### set up a two-way ANOVA
amod <- aov(breaks ~ wool + tension, data = warpbreaks)
### set up all-pair comparisons for factor `tension'
wht <- glht(amod, linfct = mcp(tension = "Tukey"))
### 95% simultaneous confidence intervals
plot(print(confint(wht)))
### the same (for balanced designs only)
TukeyHSD(amod, "tension")
### corresponding adjusted p values
summary(wht)
### all means for levels of `tension'
amod <- aov(breaks ~ tension, data = warpbreaks)
glht(amod, linfct = matrix(c(1, 0, 0,
1, 1, 0,
1, 0, 1), byrow = TRUE, ncol = 3))
### confidence bands for a simple linear model, `cars' data
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1)
### fit linear model and add regression line to plot
lmod <- lm(dist ~ speed, data = cars)
abline(lmod)
### a grid of speeds
speeds <- seq(from = min(cars$speed), to = max(cars$speed),
length = 10)
### linear hypotheses: 10 selected points on the regression line != 0
K <- cbind(1, speeds)
### set up linear hypotheses
cht <- glht(lmod, linfct = K)
### confidence intervals, i.e., confidence bands, and add them plot
cci <- confint(cht)
lines(speeds, cci$confint[,"lwr"], col = "blue")
lines(speeds, cci$confint[,"upr"], col = "blue")
### simultaneous p values for parameters in a Cox model
if (require("survival") && require("MASS")) {
data("leuk", package = "MASS")
leuk.cox <- coxph(Surv(time) ~ ag + log(wbc), data = leuk)
### set up linear hypotheses
lht <- glht(leuk.cox, linfct = diag(length(coef(leuk.cox))))
### adjusted p values
print(summary(lht))
}
```

Run the code above in your browser using DataLab