Learn R Programming

multiClust (version 1.0.2)

number_clusters: Function to determine the number of clusters to be used to cluster gene probes and samples.

Description

Function to determine the number of clusters to be used to cluster gene probes and samples.

Usage

number_clusters(data.exp, Fixed = 3, gap_statistic = NULL)

Arguments

data.exp
The numeric original gene expression matrix to be used for clustering of genes and samples. This object is an output of the input_file function.
Fixed
A positive integer used to represent the number of clusters the samples and probes will be divided into. The default cluster number is set to 3 clusters.
gap_statistic
A logical indicating whether to use the gap_statistic to determine the optimal number of clusters to divide samples into.

Value

  • An object with the determined number of clusters to use.

See Also

clusGap, probe_ranking

Examples

Run this code
#Example 1: Using a fixed cluster number
# Load in a test file
data_file <- system.file("extdata", "GSE2034.normalized.expression.txt",
package="multiClust")
data <- input_file(data_file)
clust_num <- number_clusters(data.exp=data, Fixed=3, gap_statistic=NULL)

# Example 2: Using the gap_statistic to determine the optimal cluster number
# Computation time is somewhat long
clust_num <- number_clusters(data.exp=data, Fixed=NULL, gap_statistic=TRUE)

Run the code above in your browser using DataLab