Learn R Programming

multiClust (version 1.0.2)

probe_ranking: Function to select for genes using one of the available gene probe ranking options.

Description

Function to select for genes using one of the available gene probe ranking options.

Usage

probe_ranking(input, probe_number, probe_num_selection = "Fixed_Probe_Num",
  data.exp, method = "SD_Rank")

Arguments

input
String indicating the name of the text file containing the gene expression matrix.
probe_number
Positive integer indicating the number of gene probes to be selected as determined by the number_probes function.
probe_num_selection
String indicating the way in which number of probes were selected for. Options include "Fixed_Probe_Num", "Percent_Probe_Num", and "Adaptive_Probe_Num".
data.exp
The object containing the original gene expression matrix. This matrix is outputted by the input_file function.
method
A string indicating the gene probe ranking method to use. Possible options include "CV_Rank", "CV_Guided", "SD_Rank", and "Poly". The default is set to "SD_Rank".

Value

  • An object containing the selected gene expression matrix for a particular ranking method. In addition a text file containing the selected gene expression data is produced.

See Also

number_probes, input_file

Examples

Run this code
# Producing a selected gene expression matrix using one of the
   # probe ranking options
# Load in a test file
data_file <- system.file("extdata", "GSE2034.normalized.expression.txt",
    package="multiClust")
data <- input_file(data_file)
selected_probes <- probe_ranking(input=data_file, probe_number=300,
   probe_num_selection="Fixed_Probe_Num", data.exp=data, method="CV_Rank")

Run the code above in your browser using DataLab