multiRL.input
process_1_input(
data,
colnames = list(),
funcs = list(),
params = list(),
priors,
settings = list(),
...
)An S4 object of class multiRL.input.
dataA DataFrame containing the trial-level raw data.
colnamesAn S4 object of class multiRL.colnames,
specifying the column names used in the input data.
featuresAn S4 object of class multiRL.features,
containing standardized representations of states and actions
transformed from the raw data.
paramsAn S4 object of class multiRL.params,
containing model parameters.
priorsA List specifying prior distributions for free parameters.
funcsAn S4 object of class multiRL.funcs,
containing functions used in model.
settingsAn S4 object of class multiRL.settings,
storing global settings for model estimation.
elementsA int indicating the number of elements within states.
subidA Character string identifying the subject.
n_blockA int value indicating the number of blocks.
n_trialA int value indicating the number of trials.
n_rowsA int value indicating the number of rows in the data.
extraA List containing additional user-defined information.
A data frame in which each row represents a single trial, see data
Column names in the data frame, see colnames
The functions forming the reinforcement learning model, see funcs
Parameters used by the model’s internal functions, see params
Prior probability density function of the free parameters, see priors
Other model settings, see settings
Additional arguments passed to internal functions.