powered by
Uses Cholesky factorization to generate a covariance matrix (or any symmetric positive definite matrix).
conv_Sigma(sigma, lower_diag)
Numeric
Numeric vector of marginal standard deviations (all greater than zeros)
Numeric vector to populate the lower triangle of the correlation matrix. All real numbers. Length sum(1:(length(sigma) - 1))
sum(1:(length(sigma) - 1))
set.seed(23) n <- 5 sigma <- runif(n, 0, 2) lower_diag <- runif(sum(1:(n-1)), -10, 10) Sigma <- conv_Sigma(sigma, lower_diag) Sigma/t(Sigma) # Is symmetric matrix? All ones cov2cor(Sigma)
Run the code above in your browser using DataLab