df_observed <- data_observed(
data = df_em_om,
exposure = "Xstar",
outcome = "Ystar",
confounders = "C1"
)
# Using validation data -----------------------------------------------------
df_validation <- data_validation(
data = df_em_om_source,
true_exposure = "X",
true_outcome = "Y",
confounders = "C1",
misclassified_exposure = "Xstar",
misclassified_outcome = "Ystar"
)
adjust_em_om(
data_observed = df_observed,
data_validation = df_validation
)
# Using x_model_coefs and y_model_coefs -------------------------------------
adjust_em_om(
data_observed = df_observed,
x_model_coefs = c(-2.15, 1.64, 0.35, 0.38),
y_model_coefs = c(-3.10, 0.63, 1.60, 0.39)
)
# Using x1y0_model_coefs, x0y1_model_coefs, and x1y1_model_coefs ------------
adjust_em_om(
data_observed = df_observed,
x1y0_model_coefs = c(-2.18, 1.63, 0.23, 0.36),
x0y1_model_coefs = c(-3.17, 0.22, 1.60, 0.40),
x1y1_model_coefs = c(-4.76, 1.82, 1.83, 0.72)
)
Run the code above in your browser using DataLab