Learn R Programming

multilevelTools (version 0.1.1)

residualDiagnostics.merMod: residualDiagnostics methods for merMod objects

Description

residualDiagnostics methods for merMod objects

Usage

# S3 method for merMod
residualDiagnostics(
  object,
  ev.perc = 0.001,
  robust = FALSE,
  distr = "normal",
  standardized = TRUE,
  ...
)

Value

A logical (is.residualDiagnostics) or a residualDiagnostics object (list) for

as.residualDiagnostics and residualDiagnostics.

Arguments

object

An object with class merMod. Currently only lmer() models are supported.

ev.perc

The extreme value percentile to use. Defaults to .001.

robust

A logical value, whether to use robust estimates or not. Defaults to FALSE.

distr

A character string specifying the assumed distribution. Currently “normal”, but may expand in the future if glmer() models are supported.

standardized

A logical value whether to use standardized residual values or not. Defaults to TRUE.

...

Additional arguments. Not currently used.

Examples

Run this code
library(JWileymisc)
sleep[1,1] <- NA
m <- lme4::lmer(extra ~ group + (1 | ID), data = sleep)

residualDiagnostics(m)$Residuals

#  gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
#    data = lme4::cbpp, family = binomial)
# residualDiagnostics(gm1) ## should be an error

rm(m, sleep)

Run the code above in your browser using DataLab