# gaussian model data
data1 <- multiness_sim(n=100,m=4,d1=2,d2=2,
model="gaussian")
# multiness_fit with fixed tuning
fit1 <- multiness_fit(A=data1$A,
model="gaussian",
self_loops=TRUE,
refit=FALSE,
tuning="fixed",
tuning_opts=list(lambda=40,alpha=1/2),
optim_opts=list(max_rank=20,verbose=TRUE))
# multiness_fit with adaptive tuning
fit2 <- multiness_fit(A=data1$A,
refit=TRUE,
tuning="adaptive",
tuning_opts=list(layer_wise=FALSE),
optim_opts=list(return_posns=TRUE))
# logistic model data
data2 <- multiness_sim(n=100,m=4,d1=2,d2=2,
model="logistic",
self_loops=FALSE)
# multiness_fit with cv tuning
fit3 <- multiness_fit(A=data2$A,
model="logistic",
self_loops=FALSE,
tuning="cv",
tuning_opts=list(N_cv=2,
penalty_const_vec=c(1,2,2.309,3),
verbose_cv=TRUE))
Run the code above in your browser using DataLab