multinma (version 0.1.3)

plot_integration_error: Plot numerical integration error

Description

For ML-NMR models, plot the estimated numerical integration error over the entire posterior distribution, as the number of integration points increases. See methods_paper,Phillippo_thesismultinma for details.

Usage

plot_integration_error(
  x,
  ...,
  stat = "violin",
  orientation = c("vertical", "horizontal", "x", "y"),
  show_expected_rate = TRUE
)

Arguments

x

An object of type stan_mlnmr

...

Additional arguments passed to the ggdist plot stat.

stat

Character string specifying the ggdist plot stat used to summarise the integration error over the posterior. Default is "violin", which is equivalent to "eye" with some cosmetic tweaks.

orientation

Whether the ggdist geom is drawn horizontally ("horizontal") or vertically ("vertical"), default "vertical"

show_expected_rate

Logical, show typical convergence rate \(1/N\)? Default TRUE.

Value

A ggplot object.

Details

The total number of integration points is set by the n_int argument to add_integration(), and the intervals at which integration error is estimated are set by the int_thin argument to nma(). The typical convergence rate of Quasi-Monte Carlo integration (as used here) is \(1/N\), which by default is displayed on the plot output.

The integration error at each thinning interval \(N_\mathrm{thin}\) is estimated for each point in the posterior distribution by subtracting the final estimate (using all n_int points) from the estimate using only the first \(N_\mathrm{thin}\) points.

Examples

Run this code
# NOT RUN {
## Plaque psoriasis ML-NMR
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
                  studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))

pso_agd <- filter(plaque_psoriasis_agd,
                  studyc == "FIXTURE")

head(pso_ipd)
head(pso_agd)

pso_ipd <- pso_ipd %>%
  mutate(# Variable transformations
    bsa = bsa / 100,
    prevsys = as.numeric(prevsys),
    psa = as.numeric(psa),
    weight = weight / 10,
    durnpso = durnpso / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                         trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                         trtn == 4 ~ "TNFa blocker"),
    # Check complete cases for covariates of interest
    complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
  )

pso_agd <- pso_agd %>%
  mutate(
    # Variable transformations
    bsa_mean = bsa_mean / 100,
    bsa_sd = bsa_sd / 100,
    prevsys = prevsys / 100,
    psa = psa / 100,
    weight_mean = weight_mean / 10,
    weight_sd = weight_sd / 10,
    durnpso_mean = durnpso_mean / 10,
    durnpso_sd = durnpso_sd / 10,
    # Treatment classes
    trtclass = case_when(trtn == 1 ~ "Placebo",
                         trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
                         trtn == 4 ~ "TNFa blocker")
  )

# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)

pso_net <- combine_network(
  set_ipd(pso_ipd,
          study = studyc,
          trt = trtc,
          r = pasi75,
          trt_class = trtclass),
  set_agd_arm(pso_agd,
              study = studyc,
              trt = trtc,
              r = pasi75_r,
              n = pasi75_n,
              trt_class = trtclass)
)

# Print network details
pso_net

# Add integration points to the network
pso_net <- add_integration(pso_net,
  durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
  prevsys = distr(qbern, prob = prevsys),
  bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
  weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
  psa = distr(qbern, prob = psa),
  n_int = 1000)

# }
# NOT RUN {
# Fitting a ML-NMR model.
# Specify a regression model to include effect modifier interactions for five
# covariates, along with main (prognostic) effects. We use a probit link and
# specify that the two-parameter Binomial approximation for the aggregate-level
# likelihood should be used. We set treatment-covariate interactions to be equal
# within each class. We narrow the possible range for random initial values with
# init_r = 0.1, since probit models in particular are often hard to initialise.
# Using the QR decomposition greatly improves sampling efficiency here, as is
# often the case for regression models.
pso_fit <- nma(pso_net,
               trt_effects = "fixed",
               link = "probit",
               likelihood = "bernoulli2",
               regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
               class_interactions = "common",
               prior_intercept = normal(scale = 10),
               prior_trt = normal(scale = 10),
               prior_reg = normal(scale = 10),
               init_r = 0.1,
               QR = TRUE)
# }
# NOT RUN {
# }
# NOT RUN {
# Plot numerical integration error
plot_integration_error(pso_fit)
# }

Run the code above in your browser using DataLab