# NOT RUN {
## Smoking cessation
# }
# NOT RUN {
# Run smoking RE NMA example if not already available
if (!exists("smk_fit_RE")) example("example_smk_re")
# }
# NOT RUN {
# Produce relative effects
smk_releff_RE <- relative_effects(smk_fit_RE)
smk_releff_RE
plot(smk_releff_RE, ref_line = 0)
# Relative effects for all pairwise comparisons
relative_effects(smk_fit_RE, all_contrasts = TRUE)
# Relative effects against a different reference treatment
relative_effects(smk_fit_RE, trt_ref = "Self-help")
# Transforming to odds ratios
# We work with the array of relative effects samples
LOR_array <- as.array(smk_releff_RE)
OR_array <- exp(LOR_array)
# mcmc_array objects can be summarised to produce a nma_summary object
smk_OR_RE <- summary(OR_array)
# This can then be printed or plotted
smk_OR_RE
plot(smk_OR_RE, ref_line = 1)
# }
# NOT RUN {
## Plaque psoriasis ML-NMR
# }
# NOT RUN {
# Run plaque psoriasis ML-NMR example if not already available
if (!exists("pso_fit")) example("example_pso_mlnmr")
# }
# NOT RUN {
# Produce population-adjusted relative effects for all study populations in
# the network
pso_releff <- relative_effects(pso_fit)
pso_releff
plot(pso_releff, ref_line = 0)
# Produce population-adjusted relative effects for a different target
# population
new_agd_means <- data.frame(
bsa = 0.6,
prevsys = 0.1,
psa = 0.2,
weight = 10,
durnpso = 3)
relative_effects(pso_fit, newdata = new_agd_means)
# }
Run the code above in your browser using DataLab