# Generate synthetic data
K <- 2
p <- 2
D <- 3
n <- 2
set.seed(116)
simData <- simulate_multinomial_data(K = K, p = p, D = D, n = n, size = 20, prob = 0.025)
# apply mcmc sampler based on random starting values
Kmax = 2
nChains = 2
dirPriorAlphas = c(1, 1 + 5*exp((seq(2, 14, length = nChains - 1)))/100)/(200)
nCores <- 2
mcmc_cycles <- 2
iter_per_cycle = 2
warm_up <- 2
mcmc_random1 <- gibbs_mala_sampler_ppt( y = simData$count_data, X = simData$design_matrix,
tau = 0.00035, nu2 = 100, K = Kmax, dirPriorAlphas = dirPriorAlphas,
mcmc_cycles = mcmc_cycles, iter_per_cycle = iter_per_cycle,
start_values = 'RANDOM',
nChains = nChains, nCores = nCores, warm_up = warm_up, showGraph = 1000,
checkAR = 1000)
#sampled values for the number of clusters (non-empty mixture components) per chain (columns)
mcmc_random1$nClusters
Run the code above in your browser using DataLab