# NOT RUN {
data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]
# Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas
# Create (repeated) CV-splits of the data.
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)
# Compute cross-validated score for initial lambdas
CVscore(penalties=lambdas, XXblocks=XXmirmeth,Y=resp,folds=leftout,
score="loglik")
# Optimize by using marginal likelihood criterion
jointlambdas2 <- optLambdas_mgcvWrap(penaltiesinit=lambdas, XXblocks=XXmirmeth,
Y=resp)
# Optimal lambdas
optlambdas <- jointlambdas2$optpen
# }
Run the code above in your browser using DataLab