ss(A, B, Ainv, Binv)
ss_matrix(hp,useM=TRUE)
ss_matrix_simple(hp,useM=TRUE)A and B; if missing, compute explicitly
mhpTRUE meaning to multiply
(pointwise) by $M$ and FALSE meaning not to (so giving the
maximum correlation consistent with the roughness matrices $B$)
ss() returns a scalar, ss_matrix() a matrix
of covariances.
Function ss() calculates the maximum possible correlation
between observations of two Gaussian processes at the same point
(equation 24 of the vignette):
$$ \left| \left( \frac{1}{2}B_r+\frac{1}{2}B_s\vphantom{\frac{1}{2}B_r^{-1}} \right)\left( \frac{1}{2}B_r^{-1}+\frac{1}{2}B_s^{-1} \right) \right|^{-1/4} $$
Functions ss_matrix() and ss_matrix_simple() calculate
the maximum covariances among the types of object specified in the
hp argument, an object of class mhp. Function
ss_matrix() is the preferred form; function
ss_matrix_simple() is a less efficient, but more transparent,
version. The two functions should return identical output.
data(mtoys)
ss_matrix(toy_mhp)
Run the code above in your browser using DataLab