########## 3-way example ##########
# create random data array with CPD/Parafac structure
set.seed(3)
mydim <- c(50, 20, 5)
nf <- 3
Amat <- matrix(rnorm(mydim[1]*nf), nrow = mydim[1], ncol = nf)
Bmat <- matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf)
Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf)
Xmat <- tcrossprod(Amat, krprod(Cmat, Bmat))
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1
X <- Xmat + Emat
# fit CPD model
set.seed(0)
cano <- cpd(X, nfac = nf, nstart = 1)
cano
# fit Parafac model
set.seed(0)
pfac <- parafac(X, nfac = nf, nstart = 1)
pfac
########## 4-way example ##########
# create random data array with CPD/Parafac structure
set.seed(4)
mydim <- c(30,10,8,10)
nf <- 4
aseq <- seq(-3, 3, length.out = mydim[1])
Amat <- cbind(dnorm(aseq), dchisq(aseq+3.1, df=3),
dt(aseq-2, df=4), dgamma(aseq+3.1, shape=3, rate=1))
Bmat <- svd(matrix(runif(mydim[2]*nf), nrow = mydim[2], ncol = nf), nv = 0)$u
Cmat <- matrix(runif(mydim[3]*nf), nrow = mydim[3], ncol = nf)
Cstruc <- Cmat > 0.5
Cmat <- Cmat * Cstruc
Dmat <- matrix(runif(mydim[4]*nf), nrow = mydim[4], ncol = nf)
Xmat <- tcrossprod(Amat, krprod(Dmat, krprod(Cmat, Bmat)))
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1
X <- Xmat + Emat
# fit CPD model
set.seed(0)
cano <- cpd(X, nfac = nf, nstart = 1)
cano
# fit Parafac model
set.seed(0)
pfac <- parafac(X, nfac = nf, nstart = 1)
pfac
########## 5-way example ##########
# create random data array with CPD/Parafac structure
set.seed(5)
mydim <- c(5, 6, 7, 8, 9)
nmode <- length(mydim)
nf <- 3
Amat <- vector("list", nmode)
for(n in 1:nmode) {
Amat[[n]] <- matrix(rnorm(mydim[n] * nf), mydim[n], nf)
}
Zmat <- krprod(Amat[[3]], Amat[[2]])
for(n in 4:5) Zmat <- krprod(Amat[[n]], Zmat)
Xmat <- tcrossprod(Amat[[1]], Zmat)
Xmat <- array(Xmat, dim = mydim)
Emat <- array(rnorm(prod(mydim)), dim = mydim)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat)) # SNR = 1
X <- Xmat + Emat
# fit CPD model
set.seed(0)
cano <- cpd(X, nfac = nf, nstart = 1)
cano
Run the code above in your browser using DataLab