## The function is currently defined as
function (pcx, pcy, scaling)
{
loadi = paste(getwd(), "/PCA_Data_", scaling, "/PCA_LoadingsMatrix.csv",
sep = "")
Loading <- read.csv(loadi, sep = ",", header = TRUE)
Loading.x <- Loading[, 2:ncol(Loading)]
rownames(Loading.x) <- Loading[, 1]
ppppp = paste(getwd(), "/PCA_Data_", scaling, "/PCA_P", sep = "")
Pvar <- read.csv(ppppp, sep = ",", header = TRUE)
Pvar.x <- Pvar[, 2:ncol(Pvar)]
rownames(Pvar.x) <- Pvar[, 1]
cum = Pvar[pcx, 2] + Pvar[pcy, 2]
pca <- paste("Loadings PC", pcx, " (", Pvar[pcx, 2], ") %")
pcb <- paste("Loadings PC", pcy, " (", Pvar[pcy, 2], ")%")
lim.load = c()
Max.pc1 = 1.1 * (max(Loading.x[, pcx]))
Min.pc1 = 1.1 * (min(Loading.x[, pcx]))
Mpc1 = c(Min.pc1 * 2, Max.pc1 * 2)
Max.pc2 = 1.1 * (max(Loading.x[, pcy]))
Min.pc2 = 1.1 * (min(Loading.x[, pcy]))
Mpc2 = c(Min.pc2 * 2, Max.pc2 * 2)
dev.new()
plot(Loading.x[, pcx], Loading.x[, pcy], xlab = pca, ylab = pcb,
xlim = c(Min.pc1, Max.pc1), ylim = c(Min.pc2, Max.pc2),
main = paste("PCA Loading Plot (", scaling, ")", sep = ""),
sub = paste("Cumulative Proportion of Variance Explained = ",
cum, "%", sep = ""))
axis(1, at = Mpc1, pos = c(0, 0), labels = FALSE, col = "grey",
lwd = 0.7)
axis(2, at = Mpc2, pos = c(0, 0), labels = FALSE, col = "grey",
lwd = 0.7)
text(Loading.x[, pcx], Loading.x[, pcy], labels = rownames(Loading.x),
cex = 0.6, pos = 1)
E = paste(getwd(), "/PCA_Data_", scaling, "/LoadingPlot_PC",
pcx, "vsPC", pcy, ".pdf", sep = "")
dev.copy2pdf(file = E)
}
Run the code above in your browser using DataLab