## The function is currently defined as
function (scaling, threshold = FALSE, pos.threshold, neg.threshold)
{
pwd.n = paste(getwd(), "/Preprocessing_Data_", scaling, "/ProcessedTable.csv",
sep = "")
x <- read.csv(pwd.n, sep = ",", header = TRUE)
x.x <- x[, 2:ncol(x)]
rownames(x.x) <- x[, 1]
x.t <- x.x
mycor = cor(x.t, method = c("pearson"))
library(gplots)
col = colorpanel(50, "blue", "white", "red")
image(mycor, axes = FALSE, col = col, main = "STOCSY")
axis(side = 1, labels = colnames(mycor), at = seq(0, 1, length = length(colnames(mycor))),
las = 2, cex.axis = 0.7)
axis(side = 2, labels = colnames(mycor), at = seq(0, 1, length = length(colnames(mycor))),
las = 2, cex.axis = 0.7)
dirout = paste(getwd(), "/STOCSY/", sep = "")
dir.create(dirout)
o = paste(dirout, "STOCSY.pdf", sep = "")
dev.copy2pdf(file = o)
o.cor = paste(dirout, "CorrelationMatrix.csv", sep = "")
write.csv(mycor, file = o.cor)
if (threshold) {
dev.new()
image(mycor, axes = FALSE, zlim = c(pos.threshold, 1),
col = "red", main = paste("STOCSY <", neg.threshold,
" & >", pos.threshold, sep = ""))
image(mycor, axes = FALSE, zlim = c(-1, neg.threshold),
col = "navy", add = TRUE)
axis(side = 1, labels = colnames(mycor), at = seq(0,
1, length = length(colnames(mycor))), las = 2, cex.axis = 0.7)
axis(side = 2, labels = colnames(mycor), at = seq(0,
1, length = length(colnames(mycor))), las = 2, cex.axis = 0.7)
out = paste(dirout, "STOCSY_", pos.threshold, "_", neg.threshold,
".pdf", sep = "")
dev.copy2pdf(file = out)
}
}
Run the code above in your browser using DataLab