if (FALSE) {
# Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(
family = gaussian(),
n_series = 4,
trend_model = VAR(cor = TRUE),
prop_trend = 1
)
plot_mvgam_series(data = simdat$data_train, series = "all")
# Fit a model that uses a latent VAR(1)
mod <- mvgam(
formula = y ~ -1,
trend_formula = ~ 1,
trend_model = VAR(cor = TRUE),
family = gaussian(),
data = simdat$data_train,
chains = 2,
silent = 2
)
# Plot the autoregressive coefficient distributions;
# use 'dir = "v"' to arrange the order of facets
# correctly
mcmc_plot(
mod,
variable = 'A',
regex = TRUE,
type = 'hist',
facet_args = list(dir = 'v')
)
# Calulate forecast error variance decompositions for each series
fevds <- fevd(mod, h = 12)
# Plot median contributions to forecast error variance
plot(fevds)
# View a summary of the error variance decompositions
summary(fevds)
}
Run the code above in your browser using DataLab