data(sir.cont)
# Matrix of possible transitions
tra <- matrix(ncol=3,nrow=3,TRUE)
tra[3,1:2] <- FALSE
# Computation of the Nelson-Aalen estimates
na.cont <- mvna(sir.cont,c("0","1","2"),tra,"cens")
xyplot(na.cont,tr.choice=c("0 2","1 2"),aspect=1,
strip=strip.custom(bg="white",
factor.levels=c("No ventilation -- Discharge/Death",
"Ventilation -- Discharge/Death"),
par.strip.text=list(cex=0.9)),
scales=list(alternating=1),xlab="Days",
ylab="Nelson-Aalen estimates")
## Not run:
# Bootstrap
# Bootstrap statistics. Works for one transition at a time
na.boot <- function(data,index,state.names,tra,cens.name,ctr) {
temp <- mvna(data[index,],state.names,tra,
cens.name,tr.choice=ctr)[[ctr]]$var1
return(temp)
}
# Matrix of possible transitions
tra <- matrix(ncol=3,nrow=3,TRUE)
tra[3,1:2] <- FALSE
# Test
na.boot(sir.cont,1:nrow(sir.cont),
c("0","1","2"),tra,"cens","0 2")
library(boot)
nb <- 10 ## nb=1000
var.boot <- boot(sir.cont,na.boot,nb,
state.names=c("0","1","2"),
tra=tra,cens.name="cens",ctr="0 2",sim="permutation")
m <- apply(var.boot$t,MARGIN=2,FUN=mean)
## End(Not run)
Run the code above in your browser using DataLab