Learn R Programming

mvpd: An R Package for Multivariate Product Distributions

  • [dpr]mvss: multivariate subgaussian stable distributions
  • [pr]mvlogis: multivariate logistic distributions

The goal of mvpd is to use product distribution theory to allow the numerical calculations of specific scale mixtures of the multivariate normal distribution. The multivariate subgaussian stable distribution is the product of the square root of a univariate positive stable distribution and the multivariate normal distribution (see Nolan (2013)).

Example

Generate 1000 draws from a random bivariate subgaussian stable distribution with alpha=1.71 and plot.

library(mvpd)
set.seed(2)
## basic example code
biv <- rmvss(n=1e3, alpha=1.71, Q=matrix(c(10,7.5,7.5,10),2))
head(biv)
#>             [,1]      [,2]
#> [1,]  3.17465324  4.122869
#> [2,] -3.26707008 -1.366920
#> [3,] -5.82800100  1.831774
#> [4,] -2.02463359 -3.749701
#> [5,]  0.01294963  3.042960
#> [6,]  1.73029594  3.812420
plot(biv); abline(h=0,v=0)

Copy Link

Version

Install

install.packages('mvpd')

Monthly Downloads

313

Version

0.0.5

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Bruce Swihart

Last Published

June 18th, 2025

Functions in mvpd (0.0.5)

rmvss

Multivariate Subgaussian Stable Random Variates
pmvss

Multivariate Subgaussian Stable Distribution
dkolm

Density for the Kolmogorov Distribution
mvpd

Multivariate Product Distributions
pmvss_mc

Monte Carlo Multivariate Subgaussian Stable Distribution
rkolm

Random Variates for the Kolmogorov Distribution
dmvt_mat

Multivariate t-Distribution Density for matrix inputs
rmvlogis

Multivariate Logistic Random Variables
pmvlogis

Multivariate Elliptically Contoured Logistic Distribution
fit_mvss

Fit a Multivariate Subgaussian Distribution
dmvss

Multivariate Subgaussian Stable Density
adaptIntegrate_inf_limPD

Adaptive multivariate integration over hypercubes (admitting infinite limits)
dmvss_mat

Multivariate Subgaussian Stable Density for matrix inputs