myALS_SVD: Alternating Least Square Singular Value Decomposition (ALS-SVD) as an example of user-defined matrix decomposition.
Description
The input data is assumed to be a matrix.
When algorithms of MWCAParams and CoupledMWCAParams are specified as "myALS_SVD",
This function is called in MWCA and CoupledMWCA.
Usage
myALS_SVD(Xn, k, L2=1e-10, iter=30)
Value
The output matrix which has N-rows and k-columns.
Arguments
Xn
The input matrix which has N-rows and M-columns.
k
The rank parameter (k <= min(N,M))
L2
The regularization parameter (Default: 1e-10)
iter
The number of iteration (Default: 30)
Author
Koki Tsuyuzaki
References
Madeleine Udell et al., (2016). Generalized Low Rank Models, Foundations and Trends in Machine Learning, 9(1).