Learn R Programming

nFactors (version 2.3.1)

structureSim: Population or Simulated Sample Correlation Matrix from a Given Factor Structure Matrix

Description

The structureSim function return a population and a sample correlation matrices from a predefined congeneric factor structure.

Usage

structureSim(fload, reppar=30, repsim=100, N, quantile=0.95,
              model="components", adequacy=FALSE, details=TRUE,
              r2limen=0.75, all=FALSE)

Arguments

fload
matrix: loadings of the factor structure
reppar
numeric: number of replication for the parallel analysis
repsim
numeric: number of replication of the matrix correlation simulation
N
numeric: number of subjects
quantile
numeric: quantile for the parallel analysis
model
character: "components" or "factors"
adequacy
logical: if TRUE print the recovered population matrix from the factor structure
details
logical: if TRUE output details of the repsim simulations
r2limen
numeric: R2 limen value for the R2 index of Nelson
all
logical: if TRUE computes athe Bentler and Yuan index (very long computating time to consider)

Value

  • valuesthe output depends of the logical value of details. If FALSE, returns only statistics about the eigenvalues: mean, median, quantile, standard deviation, minimum and maximum. If TRUE, returns also details about the repsim simulations. If adequacy = TRUE return the recovered factor structure

References

Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological bulletin, 99, 432-442.

See Also

principalComponents, iterativePrincipalAxis, rRecovery

Examples

Run this code
# .......................................................
# Example inspired from Zwick and Velicer (1986, table 2, p. 437)
## ...................................................................
 nFactors  <- 3
 unique    <- 0.2
 loadings  <- 0.5
 nsubjects <- 180
 repsim    <- 30
 zwick     <- generateStructure(var=36, mjc=nFactors, pmjc=12,
                                loadings=loadings,
                                unique=unique)
## ...................................................................

# Produce statistics about a replication of a parallel analysis on
# 30 sampled correlation matrices

 mzwick.fa <-  structureSim(fload=as.matrix(zwick), reppar=30,
                            repsim=repsim, N=nsubjects, quantile=0.5,
                            model="factors")

 mzwick    <-  structureSim(fload=as.matrix(zwick), reppar=30,
                            repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)

# Very long execution time that could be used only with model="components"
# mzwick    <-  structureSim(fload=as.matrix(zwick), reppar=30,
#                            repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)

 par(mfrow=c(2,1))
 plot(x=mzwick,    nFactors=nFactors, index=c(1:14), cex.axis=0.7, col="red")
 plot(x=mzwick.fa, nFactors=nFactors, index=c(1:11), cex.axis=0.7, col="red")
 par(mfrow=c(1,1))

 par(mfrow=c(2,1))
 boxplot(x=mzwick,    nFactors=3, cex.axis=0.8, vLine="blue", col="red")
 boxplot(x=mzwick.fa, nFactors=3, cex.axis=0.8, vLine="blue", col="red",
         xlab="Components")
 par(mfrow=c(1,1))
# ......................................................

Run the code above in your browser using DataLab